
Week 3 - Wednesday

 What did we talk about last time?
 Finished bitwise operations
 Precedence
 Selection statements

Unix is simple. It just takes a genius to understand its
simplicity.

Dennis Ritchie

 Like Java, the body of an if statement will only execute if the
condition is true
 The condition is evaluated to an int
 True means not zero

 An else is used to mark code executed if the condition is false

Sometimes this is natural and clear; at other times it can
be cryptic.

The if part Any expression
that has a value

Any single statement ending in
a semicolon or a block in braces

if(condition)
statement

Two different
outcomes

if(condition)
statement1

else
statement2

 We can nest if statements inside of other if statements,
arbitrarily deep

 Just like Java, there's no such thing as an else if statement
 But we can pretend there is because the entire if statement

and the statement beneath it (and optionally a trailing else)
are treated like a single statement

 switch statements allow us to choose between many listed
possibilities

 Execution will jump to the matching label or to default (if
present) if none match
 Labels must be constant (either literal values or #define constants)

 Execution will continue to fall through the labels until it
reaches the end of the switch or hits a break
 Don't leave out break statements unless you really mean to!

switch(data)
{

case constant1:
statements1

case constant2:
statements2

…
case constantn:

statementsn
default:

default statements
}

 C has three loops, all familiar from Java
 while loop
▪ You don't know how many times you want to run

 for loop
▪ You know how many times you want to run

 do-while loop
▪ You want to run at least once

 Like if statements, the condition for them will be evaluated
to an int, which is true as long as it is non-zero
 All loops execute as long as the condition is true

 A while loop is the keyword while followed by a pair of
parentheses

 Within the parentheses is a condition
 If the condition is true, the body of the loop will be executed
 At the end of the loop, the condition is checked again

while(condition)

statement

 A for loop consists of three parts:
 Initialization
 Condition
 Increment

 The initialization is run when the loop is reached
 If the condition is true, the body of the loop will be executed
 At the end of the loop, the increment will be executed and the

condition checked again
 If the condition is empty (nothing in it), it is considered true

Way to Progress

Ending
Point

Starting Point

for (initialization ; condition ; increment)

statement

 C has a comma operator
 Expressions can be written and separated by commas
 Each will be evaluated, and the last one will give the value for

the entire expression

int a = 10;
int b = 5;
int c = (a, b, ++a, a + b); //16

 Sometimes you want to do multiple things on each iteration
 Consider this code to reverse an array

 You can even use a comma in the condition part, but it doesn't
usually make sense

for(int start = 0, end = length - 1; start < end; start++, end--)
{

int temp = array[start];
array[start] = array[end];
array[end] = temp;

}

 As in Java, there are do-while loops which are useful only
occasionally

 They work just like while loops except that that they're
guaranteed to execute at least once

 Unlike a while loop, the condition isn't checked the first time
you go into the loop

 Sometimes this is useful for getting input from the user
 Don't forget the semicolon at the end!

do

statement

while(condition);

 C has relatively relaxed syntax rules

 What the hell is that?!

int n = (count + 7) / 8;
switch (count % 8)
{

case 0: do { *to++ = *from++;
case 7: *to++ = *from++;
case 6: *to++ = *from++;
case 5: *to++ = *from++;
case 4: *to++ = *from++;
case 3: *to++ = *from++;
case 2: *to++ = *from++;
case 1: *to++ = *from++;

} while (--n > 0);
}

 Use the loop of your choice to count the number of 1 bits in an
unsigned int value

 You pretty much have to do this on Project 2

 Loops can go on forever if you aren't careful

int n = 40;
int i = 1;

while (i <= 40)
{
printf ("%d", i);
// Supposed to print all the numbers
// less than 40, but i never increases

}

 Infinite for loops are unusual, but possible:

 This situation is more likely:

for (; ;)
printf("Hey!");

for (int i = 0; i < 10; ++i)
{
printf("%d", i);
// Lots of other code
--i; // Whoops, maybe changed from while?

}

 Overflow and underflow will make some badly written loops
eventually terminate

for (int i = 1; i <= 40; --i)
// Whoops, should have been ++i
printf("%d", i);

 Being off by one is a very common loop error

for (int i = 1; i < 40; ++i)
// Runs 39 times
printf("%d", i);

 If the condition isn't true to begin with, the loop will just be
skipped

for (int i = 1; i >= 40; i++)
// Oops, should be <=
printf("%d", i);

 A misplaced semicolon can cause an empty loop body to be executed

 Everything looks good, loop even terminates
 But, only one number will be printed: 41
 Misplaced semicolon usually makes a while loop infinite

int i;
for (i = 1; i <= 40; i++); // Semicolon is wrong
{
printf("%d", i);

}

 break and continue
 System calls

 Keep reading K&R chapter 3
 Read LPI chapters 2 and 3
 Work on Project 2

	COMP 2400
	Last time
	Questions?
	Project 2
	Quotes
	Selection
	if statements
	Anatomy of an if
	Anatomy of an if-else
	Nesting
	switch statements
	Anatomy of a switch statement
	Loops
	Three loops
	while loop
	Anatomy of a while loop
	for loop
	Anatomy of a for loop
	The comma operator
	Adding the comma to for
	do-while loops
	Anatomy of a do-while loop
	Duff's device
	Practice
	Common Loop Errors
	Infinite loops
	Infinite for loops
	(Almost) infinite loops
	Fencepost errors
	Skipping loops entirely
	Misplaced semicolon
	Ticket Out the Door
	Upcoming
	Next time…
	Reminders

