
Week 3 - Wednesday



 What did we talk about last time?
 Finished bitwise operations
 Precedence
 Selection statements







Unix is simple. It just takes a genius to understand its 
simplicity.

Dennis Ritchie





 Like Java, the body of an if statement will only execute if the 
condition is true
 The condition is evaluated to an int
 True means not zero

 An else is used to mark code executed if the condition is false

Sometimes this is natural and clear; at other times it can 
be cryptic.



The if part Any expression 
that has a value

Any single statement ending in 
a semicolon or a block in braces

if( condition ) 
statement



Two different 
outcomes

if( condition ) 
statement1

else
statement2



 We can nest if statements inside of other if statements, 
arbitrarily deep

 Just like Java, there's no such thing as an else if statement
 But we can pretend there is because the entire if statement 

and the statement beneath it (and optionally a trailing else) 
are treated like a single statement



 switch statements allow us to choose between many listed 
possibilities

 Execution will jump to the matching label or to default (if 
present) if none match
 Labels must be constant (either literal values or #define constants)

 Execution will continue to fall through the labels until it 
reaches the end of the switch or hits a break
 Don't leave out break statements unless you really mean to!



switch( data )
{ 

case constant1:
statements1

case constant2:
statements2

…
case constantn:

statementsn
default:

default statements
}





 C has three loops, all familiar from Java
 while loop
▪ You don't  know how many times you want to run

 for loop
▪ You know how many times you want to run

 do-while loop
▪ You want to run at least once

 Like if statements, the condition for them will be evaluated 
to an int, which is true as long as it is non-zero
 All loops execute as long as the condition is true



 A while loop is the keyword while followed by a pair of 
parentheses

 Within the parentheses is a condition
 If the condition is true, the body of the loop will be executed
 At the end of the loop, the condition is checked again



while( condition ) 

statement



 A for loop consists of three parts:
 Initialization
 Condition
 Increment

 The initialization is run when the loop is reached
 If the condition is true, the body of the loop will be executed
 At the end of the loop, the increment will be executed and the 

condition checked again
 If the condition is empty (nothing in it), it is considered true



Way to Progress

Ending 
Point

Starting Point

for ( initialization ; condition ; increment )

statement



 C has a comma operator
 Expressions can be written and separated by commas
 Each will be evaluated, and the last one will give the value for 

the entire expression

int a = 10;
int b = 5;
int c = (a, b, ++a, a + b); //16



 Sometimes you want to do multiple things on each iteration
 Consider this code to reverse an array

 You can even use a comma in the condition part, but it doesn't 
usually make sense

for(int start = 0, end = length - 1; start < end; start++, end--) 
{

int temp = array[start];
array[start] = array[end];
array[end] = temp;

}



 As in Java, there are do-while loops which are useful only 
occasionally

 They work just like while loops except that that they're 
guaranteed to execute at least once

 Unlike a while loop, the condition isn't checked the first time 
you go into the loop

 Sometimes this is useful for getting input from the user
 Don't forget the semicolon at the end!



do

statement

while( condition );



 C has relatively relaxed syntax rules

 What the hell is that?!

int n = (count + 7) / 8;
switch (count % 8)
{

case 0: do { *to++ = *from++; 
case 7:     *to++ = *from++;
case 6:     *to++ = *from++;   
case 5:     *to++ = *from++; 
case 4:     *to++ = *from++; 
case 3: *to++ = *from++; 
case 2:     *to++ = *from++;
case 1:     *to++ = *from++; 

} while (--n > 0); 
}



 Use the loop of your choice to count the number of 1 bits in an 
unsigned int value

 You pretty much have to do this on Project 2





 Loops can go on forever if you aren't careful

int n = 40;
int i = 1;

while (i <= 40)
{
printf ("%d", i);
// Supposed to print all the numbers
// less than 40, but i never increases

}



 Infinite for loops are unusual, but possible:

 This situation is more likely:

for ( ; ; )
printf("Hey!");

for (int i = 0; i < 10; ++i)
{
printf("%d", i); 
// Lots of other code
--i; // Whoops, maybe changed from while?

}



 Overflow and underflow will make some badly written loops 
eventually terminate

for (int i = 1; i <= 40; --i)
// Whoops, should have been ++i
printf("%d", i);



 Being off by one is a very common loop error

for (int i = 1; i < 40; ++i)
// Runs 39 times
printf("%d", i);



 If the condition isn't true to begin with, the loop will just be 
skipped

for (int i = 1; i >= 40; i++ ) 
// Oops, should be <=
printf("%d", i);



 A misplaced semicolon can cause an empty loop body to be executed

 Everything looks good, loop even terminates
 But, only one number will be printed: 41
 Misplaced semicolon usually makes a while loop infinite

int i;
for (i = 1; i <= 40; i++); // Semicolon is wrong
{
printf("%d", i);

}







 break and continue
 System calls



 Keep reading K&R chapter 3
 Read LPI chapters 2 and 3
 Work on Project 2
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